Ульяновский государственный университет Экологический факультет Кафедра общей и биологической химии

ЕникееваЛ.Ф.

КИМИХ

Методические указания для самостоятельной работы бакалавров направления подготовки 27.03.02 «Управление качеством»

Печатается по решению Ученого совета ИМЭиФК Ульяновского государственного университета

Рецензент — кандидат педагогических наук, заведующая кафедрой химии Ульяновского государственного педагогического университета им. И.Н. Ульянова И.Т. Гусева

ЕникееваЛ.Ф.

Химия: Методические указания для самостоятельной работы бакалавров направления подготовки 27.03.05Инноватика/ Л.Ф. Еникеева. – Ульяновск: УлГУ, 2022. – 24 с.

Методическое пособие по дисциплине «Химия» предназначено в помощь студентам, обучающимся по направлению подготовки 27.03.05Инноватика, для самостоятельного изучения отдельных разделов курса. Методические указания включают в себя требования к результатам освоения дисциплины, тематический план дисциплины, список рекомендуемой литературы, тесты для самоподготовки, контрольные вопросы к экзамену.

СОДЕРЖАНИЕ

- 1 Цель и задачи дисциплины
- 2 Требования к результатам освоения дисциплины
- 3 Список рекомендуемой литературы для самостоятельной работы студентов
- 4 Разделы дисциплин и виды учебных занятий
- 5 Тематический план дисциплины
- 6 Тематика семинарских занятий
- 7 Темы рефератов и требования к их оформлению
- 8 Контрольные вопросы по дисциплине (вопросы к экзамену)
- 9 Тесты для самоподготовки студентов

1 ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели освоения дисциплины: Дисциплина «Химия» имеет целью формирование у студентов основных понятий теоретической химии, необходимых для изучения общенаучных и специальных дисциплин, а также развитие профессиональных навыков для профессиональной деятельности, требуемых квалификационной характеристикой по направлению подготовки «Инноватика».

Задачи освоения дисциплины:

- формирование системных знаний о методах и методиках химического анализа, применяемых в практической деятельности по специальности «Инноватика».
- формирование умений выполнять в необходимых случаях расчеты параметров различных процессов.
- формирование умения работы с химическими веществами при решении проблемных задач
- формирование практических навыков постановки и выполнения экспериментальной работы по идентификации веществ.

2 ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Химия» направлен на формирование следующих компетенций в соответствии с ФГОС ВО:

ОПК-1

Способен анализировать задачи профессиональной деятельности на основе положений, законов и методов в области математики, естественных и технических наук.

Знать: основные понятия, законы и модели химических систем, реакционную способность веществ; свойства основных видов химических веществ и классов химических объектов; основные понятия, законы и модели коллоидной и физической химии;

Уметь: самостоятельно приобретать новые знания по предмету, пользоваться специальной литературой и находить нужную информацию в глобальных компьютерных сетях и корпоративных информационных системах.

Владеть: методами экспериментального исследования в химии (планирование, постановка и обработка эксперимента), методами выделения и очистки веществ, определения их состава; методами предсказания протекания возможных химических реакций и их кинетику.

3 СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

основная:

- 1. Глинка Н.Л. Общая химия, М.: Интеграл-Пресс, 2005. 723 с.
- 2. Коровин Н.В. Общая химия. М.: Высшая шк., 2000.
- 3.ГлинкаН.Л. Задачи и упражнения по общей химии/Под ред. В.А.Рабиновича, Х.М.

Рубиной. 26-е изд. Л.: Химия, 1988.

4. Артеменко А. И. Органическая химия: Учебник для вузов / Артеменко Александр Иванович. - В пер. - М. : Высшая школа, 2002

дополнительная:

- 1.ГузейЛ.С., Кузнецов В.Н., ГузейА.С.. Общая химия. М.: Изд-во Моск. ун-та.1999.
- 2.ПавловН.Н. Общая и неорганическая химия. М.: Дрофа, 2002.
- 3. ТретьяковЮ.Д. (ред.) Неорганическая химия. Т.1. М.: Academia, 2004.
- 4.Хаускрофт К., Констебл Э. Современный курс общей химии. М.: Мир, 2002.
- 5.Березин Б.Д., Березин Д.Б. Курс современной органической химии. М.: ВШ, 2001.

учебно-методическая:

- 1.ЕникеевЭ.Ш., ЕникееваЛ.Ф., Михеева Л.А., Брынских Г.Т. Руководство для проведения лабораторных работ по химии. Ульяновск: УлГУ, 2015. 30 с.
- 2. ЕникееваЛ.Ф., Михеева Л.А., Брынских Г.Т. Методическое пособие к лабораторным занятиям по органической химии. Ульяновск: УлГУ, 2015. 52 с.

б) программноеобеспечение

- 1.Microsoft Office
- 2.OCWindowsProfessional
- 3.Антиплагиат ВУЗ

в) Профессиональные базы данных, информационно-справочные системы

- **1.IPRbooks** [Электронный ресурс]: электронно-библиотечная система / группа компаний Ай Пи Эр Медиа. Электрон. дан. Саратов, [2019]. Режим доступа: http://www.iprbookshop.ru.
- **2.ЮРАЙТ** [Электронный ресурс]: электронно-библиотечная система / ООО Электронное издательство ЮРАЙТ. Электрон. дан. Москва , [2019]. Режим доступа: https://www.biblio-online.ru.
- **3.Консультант студента** [Электронный ресурс]: электронно-библиотечная система / ООО Политехресурс. Электрон. дан. Москва, [2019]. Режим доступа: http://www.studentlibrary.ru/pages/catalogue.html.
- **4.КонсультантПлюс** [Электронный ресурс]: справочная правовая система. /Компания «Консультант Плюс» Электрон. дан. Москва :КонсультантПлюс, [2019].
- **5.База данных периодических изданий** [Электронный ресурс] : электронные журналы / ООО ИВИС. Электрон. дан. Москва, [2019]. Режим доступа: https://dlib.eastview.com/browse/udb/12.
- **6.Национальная электронная библиотека** [Электронный ресурс]: электронная библиотека. Электрон. дан. Москва, [2019]. Режим доступа: https://hə6.pd.
- **7.** Электронная библиотека диссертаций РГБ [Электронный ресурс]: электронная библиотека / ФГБУРГБ. Электрон. дан. Москва, [2019]. Режим доступа: https://dvs.rsl.ru.

Федеральные информационно-образовательные порталы:

- 1.Информационная система <u>Единое окно доступа к образовательным ресурсам</u>. Режим доступа: http://window.edu.ru
- 2. Федеральный портал <u>Российское образование</u>. Режим доступа: http://www.edu.ru

Образовательные ресурсы УлГУ:

- 1.Электронная библиотека УлГУ. Режим доступа: http://lib.ulsu.ru/MegaPro/Web
- 2.Образовательный портал УлГУ. Режим доступа: http://edu.ulsu.ru

4 РАЗДЕЛЫ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНЫХ ЗАНЯТИЙ

		Виды учебных занятий					
		Ауди	торные за				Φ
Название разделов и тем	Всего	лекции	практи- ческие занятия, семина- ры	лабора- торные работы, практи- кумы	Занятия в интерак- тивной форме	Самосто- ятельная работа	Форма текущего контроля знаний
I	2	3	4	5	6	7	8
1. Основные понятия и законы химии	6	1	1	1	-	4	тестирова- ние
2. Строение атома. Химическая связь и строение вещества	8	2	1	1	-	5	тестирова- ние
3.Энергетика химических процессов. Химическая кинетика. Химическое равновесие.	11	2	2	2	4	5	тестирование, устный опрос
3. Растворы Растворы электролитов.	11	2	2	2	4	5	тестирова- ние, устный опрос
4. Дисперсные системы. Строение и устойчивость дисперсных систем. Коллоидные растворы. Поверхностноактивные вещества. Эмульсии.	11	2	1	2	6	5	тестирование, устный опрос
5. Электрохимические процессы Металлы. Коррозионные процессы	11	2	2	2	4	5	тестирование, устный опрос
6. Химия неметаллов.	10	1	2	2	-	5	тестирова- ние, устный опрос
7. Химия металлов.	10	1	2	2	-	5	тестирова-

							ние
8. Химия	11	2	2	2	_	5	тестирова-
углеводородов.							ние
9. Химия	11	2	2	2	-	5	тестирова-
кислородсодержащи							ние,
х органических							устный
соединений.							опрос
11.Химия	9	1	1	2	-	5	тестирова-
азотсодержащих							ние
органических							
соединений							
Зачет по дисциплине	-	-	-	-	-	-	-
итого:	108	18	18	18	18	54	-

5 ТЕМАТИЧЕСКИЙ ПЛАН ДИСЦИПЛИНЫ

Тема 1. Основные стехиометрические законы.

Закон сохранения массы, закон постоянства состава, закон кратных отношений, закон эквивалентов, закон Авогадро и его следствия.

Тема 2. Строение атома. Химическая связь и строение вещества.

Состояние электронов в атоме. Понятие об энергетических уровнях и электронных орбиталях. Принципы и правила заполнения атомных орбиталей. Периодическая система Д. И. Менделеева.s-,p-,d-, и f-элементы. Изменение атомных и ионных радиусов в Периодической системе. Периодическое изменение свойств элементов. Электронная классификация химических элементов.

Основные виды и характеристики химической связи. Ковалентная связь: механизм образования ковалентной связи, разновидности ковалентной связи. Гибридизация атомных орбиталей. Понятие о методе молекулярных орбиталей. Ионная связь: механизм образования, характеристика ионной связи. Металлическая связь. Межмолекулярное взаимодействие.

Тема 3. Энергетика химических процессов. Химическая кинетика. Химическое равновесие.

Энергетические химических реакций. Основные понятия. Теплота и работа. Внутренняя энергия и энтальпия. Термохимические законы и уравнения. Закон Гесса. Расчеты стандартных энтальпий химических реакций и физико-химических превращений на основе закона Гесса. Понятие об энтропии как мере неупорядоченности системы. Энергия Гиббса как критерий самопроизвольного протекания процесса и термодинамической устойчивости химических реакций.

Классификация химических реакций. Молекулярность и порядок реакции. Основные понятия кинетики. Скорость гомогенных и гетерогенных химических реакций. Зависимость скорости реакции от концентрации и температуры. Энергия активации. Закон действующих масс. Обратимые и необратимые реакции. Химическое равновесие. Константа химического равновесия и ее связь с термодинамическими функциями. Факторы, влияющие на химическое равновесие. Смещение химического равновесия. Принцип ЛеШателье.

Тема 4. Растворы. Растворы электролитов.

Растворы. Классификация растворов. Способы выражения состава растворов. Теория растворов. Термодинамика процесса растворения. Растворимость. Законы Генри, Дальтона и Сеченова. Коллигативные свойства растворов.

Электролиты. Водные растворы сильных и слабых электролитов. Активность.

Коэффициент активности. Теории кислот и оснований Аррениуса, Бренседа-Лоура и Льюиса. Константы кислотности и основности. Особенности воды как растворителя. Водородный показатель – pH. Обменные реакции в растворах: нейтрализации, гидролиза, осаждения – растворителя. Произведение растворимости.

Тема 5. Дисперсные системы. Строение и устойчивость дисперсных систем. Коллоидные растворы.Поверхностно-активные вещества. Эмульсии.

Общие понятия о дисперсных системах. Дисперсность и дисперсные системы. Классификация дисперсных систем. Способы образования и устойчивости дисперсных систем. Золи, гели, студни. Получение коллоидных растворов Структура коллоидной частицы. Мицеллярное строение золей. Исходные понятия об устойчивости дисперсных систем. Энергия Ван-дер-ваальсовых взаимодействий. Электролитная коагуляция. Пептизация. Кинетика процесса коагуляции.

Аэрозоли, порошки, суспензии, пены. Поверхностно-активные вещества и их влияние на дисперсные системы. Применение ПАВ. Эмульсии: проблемы устойчивости. Тип эмульсии. Эмульгаторы: их действие и типы. Солюбилизация (коллоидное растворение).

Тема 6. Электрохимические процессы. Металлы. Коррозионные процессы.

Окислительно-восстановительная способность различных соединений. Понятие об электродных потенциалах. Стандартный водородный электрод и водородная шкала потенциалов. Определение и классификация электрохимических процессов. Уравнение Нернста и направление окислительно-восстановительного процесса. Гальванический элемент. ЭДС процесса и ее измерение. Аккумуляторы: свинцовый и никель-кадмиевый. Принцип работы аккумуляторов. Электролиз. Законы Фарадея.

Металлы. Зависимость свойств металлов от их положения в Периодической системе Д.И.Менделеева. Основные методы получения металлов. Интерметаллические соединения и твердые растворы металлов. Сплавы, диаграммы состояния сплавов. Применение металлов и сплавов в технике. Физико-химические процессы при сварке и пайке металлов. Коррозия металлов и сплавов. Виды коррозии: химическая и электрохимическая. Методы защиты от коррозии: легирование, электрохимическая защита, защитные покрытия, изменение свойств коррозийной среды, ингибиторы коррозии.

Тема 7. Химия немеаллов.

Электронное строение атомов р-элементов VII группы Периодической системы. Распространенность в природе. Основные минералы. Получение и применение галогенов. Физико-химические свойства галогенов. Соединения галогенов с водородом. Кислородсодержащие соединения галогенов. Окислительно-восстановительная способность кислородных кислот галогенов и их солей. Применение. Токсикология элементов VIIA группы и их соединений.

Общая характеристика р-элементов VI группы Периодической системы. Кислород в природе. Воздух. Химические свойства кислорода. Озон. Сера в природе. Диоксид серы, сернистая кислота, триоксид серы, серная кислота, тиосерная кислота, сероводород, сульфиды. Селен, теллур — химические свойства элементов и их соединений. Токсикология р-элементов VI группы Периодической системы и их соединений.

Общая характеристика р-элементов V группы Периодической системы. Азот, аммиак, азотная кислота и ее соли - химические свойства. Фосфор. Соединения фосфора с водородом и галогенами. Оксиды и кислоты фосфора. Сурьма, висмут — химические свойства элементов и их соединений. Токсикология р-элементов V группы Периодической системы и их соединений

Общая характеристика р-элементов IV группы. Распространенность в природе. Основные соединения. Физико-химические свойства углерода, кремния и их соединений. Германий, олово, свинец – химические свойства. Токсикология р-элементов IV группы и их соединений.

Тема 8. Химия металлов.

Общая характеристика p-элементов lll группы. Распространенность в природе. Основные соединения. Физико-химические свойства бора, алюминия и их соединений. Галлий, индий, таллий – химические свойства. Токсикология p-элементов lll группы Периодической системы и их соединений.

Электронное строение атомов элементов 1 и 11 групп Периодической системы. Водород. Распространенность в природе. Основные минералы. Физико-химические свойства щелочных и щелочно-земельных металлов, водорода, лития, магния и бериллия. Оксиды, гидроксиды и соли s-элементов. Токсикология соли s-элементов и их соединений.

d-элементы. Общая характеристика. Распространенность в природе. Физикохимические свойства d-элементов. Токсикология d-элементов и их соединений.

Тема 9. Химия углеводородов.

Возникновение теоретических воззрений в органической химии. Строение органических веществ и учение А.М.Бутлерова. Классификация органических веществ. Электронная концепция химической связи. Основы квантово-химических представлений. Ковалентная связь в органических соединениях, ее виды и свойства. Гибридизация атомных орбиталей. Номенклатура органических соединений.

Алканы.

Изомерия, номенклатура. Физические и химические свойства. Способы получения. Реакции замещения, дегидрирования, изомеризации. Хлорирование, нитрование, сульфирование и окисление. Крекинг алканов.

Алкены.

Электронные представления о двойной связи. Номенклатура, изомерия способы получения алкенов. Реакционная способность алкенов. Полимеризация алкенов.

Алкины

Особенности тройной связи. Способы получения. Химические свойства. Ацетилен. Полимеризация ацетилена.

Алкадиены.

Органические галогенпроизводные. Изолированные, кумулированные и сопряженные связи в молекулах алкадиенов. Химические свойства алкадиенов с сопряженными связями. Получение, свойства синтетических каучуков. Галогенпроизводные углеводородов. Классификация. Изомерия, номенклатура. Способы получения галогеналканов из спиртов, алканов, алкенов; замещением атома одного галогена атомом другого, хлорметилированиеаренов. Реакции нуклеофильного замещения у насыщенного атома углерода в алкилгалогенидахРеакции элиминирования Правила Зайцева и Гофмана. Арены.

Ароматичность. Строение бензола. Формула Кекуле. Молекулярные орбитали бензола. Конденсированные ароматические углеводороды: нафталин, фенантрен, антрацен.

Получение ароматических углеводородов в промышленности каталитический риформинг нефти, переработка коксового газа и каменноугольной смолы. Лабораторные методы синтеза: реакция Вюрца - Фиттига, алкилированиеаренов по Фриделю - Крафтсу, декарбоксилирование солей ароматических кислот (реакция Дюма), полимеризация алкинов. Свойства аренов. Каталитическое гидрирование аренов, восстановление аренов по Бёрчу, фотохимическое хлорирование бензола. Реакции замещения водорода в боковой цепи алкилбензолов на галоген. Окисление гомологов бензола. Реакции электрофильного замещения в ароматическом ряду. Влияние природы заместителя на ориентацию и скорость реакции электрофильного замещения. Электронодонорные и электроноакцепторные заместители. Согласованная и несогласованная ориентация двух или нескольких заместителей в ароматическом кольце. Нитрование. Нитрующие агенты..

Нитрование бензола и его замещенных. Галогенирование. Галогенирующие агенты. Сульфирование. Сульфирующие агенты. Механизм реакции. Кинетический и термодинамический контроль в реакции сульфирования на примере фенола и нафталина. Обратимость реакции сульфирования. Превращения сульфогруппы. Алкилированиеаренов по Фриделю–Крафтсу. Алкилирующие агенты.

Ацилированиеаренов по Фриделю-Крафтсу. Нуклеофильное замещение в аренах. Тема 10. Химия кислородсодержащих органических соединений. Спирты.

Одноатомные спирты. Гомологический ряд, классификация, изомерия и номенклатура. Методы получения: из алкенов, карбонильных соединений, галогеналканов, сложных эфиров и карбоновых кислот. Свойства спиртов. Спирты, как слабые ОН-кислоты. Спирты, как основания Льюиса. Замещение гидроксильной группы в спиртах на галоген (под действием галогеноводородов, галогенидов фосфора, хлористого тионила). Дегидратация спиртов: образование простых и сложных эфиров. Реакции элиминирования спиртов. Окисление первичных спиртов до альдегидов и карбоновых кислот, вторичных спиртов до кетонов. Двухатомные и трехатомные спирты. Методы синтеза. Химические свойства: окисление, ацилирование, дегидратация, взаимодействие с активными металами, щелочами, карбоновыми кислотами. Взаимодействие глицерина с азотной и фосфорной кислотами. Образование хелатных комплексов. Применение этиленгликоля и глицерина. Простые эфиры. Классификация, номенклатура. Виды изомерии. Методы получения: реакция Вильямсона, межмолекулярная дегидратация спиртов, присоединение спиртов и фенолов к алкенам и алкинам.

Фенолы.

Классификация. Методы получения: щелочное плавление аренсульфонатов, замещение галогена на гидроксил. Кумольный способ получения фенола в промышленности (синтез П.Г.Сергеева).Свойства фенолов. Фенолы как ОН-кислоты. Сравнение кислотного характера фенолов и спиртов, влияние заместителей на кислотность фенолов. Образование простых и сложных эфиров фенолов. Реакции электрофильного замещения в ароматическом ядре фенолов: галогенирование, сульфирование, нитрование, нитрозирование, сочетание с солями диазония, алкилирование и ацилирование.

Альдегиды и кетоны.

Изомерия и номенклатура. Методы получения альдегидов и кетонов из спиртов, производных карбоновых кислот, алкенов (озонолиз), алкинов (гидроборирование, гидратация по Кучерову), на основе металлорганических соединений. Ацилирование и формилирование ароматических соединений. Промышленное получение формальдегида, ацетальдегида и высших альдегидов (гидроформилирование). Строение карбонильной группы, ее полярность и поляризуемость. Влияние природы и строения радикала на карбонильную активность. Химические свойства. Общие представления о механизме нуклеофильного присоединения по карбонильной группе альдегидов и кетонов. Кислотный и основной катализ. Кислотность и основность карбонильных соединений. Кето-енольная таутомерия. Енолизация альдегидов и кетонов в реакциях галогенирования, изотопного обмена водорода и рацемизации оптически активных кетонов. Кислотный и основной катализ этих реакций. Восстановление альдегидов и кетонов до спиртов. Окисление альдегидов, реагенты окисления.

 α -, β -непредельные альдегиды и кетоны. Методы получения: конденсации, окисление аллиловых спиртов. Сопряжение карбонильной группы с двойной углеродуглеродной связью. Реакции 1,2- и 1,4-присоединения. Восстановление α -, β -непредельных карбонильных соединений.

Карбоновые кислоты и их производные.

Карбоновые кислоты. Электронное строение карбоксильной группы. Изомерия, способы получения одноосновных и двухосновных карбоновых кислот. Номенклатура.

Кислотные свойства. Их изменения под действием заместителя. Химические свойства.

Реакция этерификации. Сложные эфиры высших жирных кислот.

Функциональные производные карбоновых кислот: амиды, ангидриды, галогенгидриды.

Способы получения, реакционная способность, область применения. Непредельные одноосновные кислоты: акриловая и метакриловая кислота.

Двухосновные карбоновые кислоты. Их получение окислением гликолей. Основные химические свойства.

Тема 11. Химия азотосодержащих органических соединений.

Амины.

Электронное строение аминогруппы. Номенклатура, изомерия, способы получения, физические и химические свойства аминов. Кислотность, основность, нуклеофильность и комплексообразование аминов. Диамины.

Электронное строение нитрогруппы.

Способы получения нитроалканов. Химические свойства нитроалканов. Отношение первичных и вторичных нитроалканов. Нитроалканы и взрывчатые вещества.

6. ТЕМЫ ПРАКТИЧЕСКИХ И СЕМИНАРСКИХ ЗАНЯТИЙ

Тема 1. Основные понятия и законы химии (практическое занятие).

Вопросы к теме.

- 1.Закон постоянства состава, закон кратных отношения.
- 2. Закон Авогадро и следствии из него.
- 3. Закон сохранения массы.
- 4. Закон эквивалентов.
- 5. Расчеты по химическим формулам и уравнениям реакций. Решение типовых задач.

Тема 2. Строение атома. Периодическая система Д.И. Менделеева в свете теории строения атома (практическое занятие).

Вопросы к теме.

- 1. Теории строения атома Резерфорда, Бора.
- 2. Основы квантовой механики. Квантовые числа и строение электронных оболочек атомов. Правила Гунда иКлечковского, принцип Паули и наименьшей энергии.
 - 3. Периодическая система Д.И. Менделеева.
 - 4. Решение типовых задач.

Тема 3. Химическая связь и строение вещества (практическое занятие).

Вопросы к теме.

- 1. Ковалентная связь, ее разновидность, механизм образования.
- 2. Метод валентных связей. Гибридизация.
- 3. Метод молекулярных орбиталей.
- 4. Ионная связь.
- 5. Межмолекулярное взаимодействие. Водородная связь.
- 6. Решение типовых задач.

Тема 4. Энергетика химических процессов (практическое занятие).

Вопросы к теме.

- 1. Первый закон термодинамики. Энтальпия.
- 2. Понятие об энтропии. Второй закон термодинамики.
- 3. Термохимические законы (закон Гесса и его следствия) и расчет.
- 4. Изобарно-изотермический потенциал как критерий самопроизвольного протекания процессов.
 - 5. Решение типовых задач.

.Тема 5. Химическая кинетика и химическое равновесие (практическое занятие).

Вопросы к теме.

- 1. Зависимость скорости химической реакции от концентрации.
- 2. Зависимость скорости химической реакции от температуры.
- 3. Химическое равновесие. Константа химического равновесия.
- 4. Смещение химического равновесия.
- 5. Решение типовых задач.

Тема 6. Теории растворов. Способы выражения концентрации растворов (практическое занятие).

Вопросы к теме.

- 1. Способы выражения концентрации растворов. Решение типовых задач.
- 2. Термодинамика процесса растворения. Теория Каблукова Менделеева. Правило фаз Фаянса.
 - 3. Законы Генри, Дальтона, Сеченова.

Тема 7. Электролитическая диссоциация и гидролиз солей (практическое занятие).

Вопросы к теме.

- 1. Константа и степень диссоциации. Закон разбавления Оствальда.
- 2. Водородный показатель. Определение рН сильных и слабых электролитов.
- 3. Гидролиз солей.
- 4. Произведение растворимости.
- 5. Решение типовых задач.

Тема 8. Электрохимические процессы. (семинарское занятие).

Вопросы к теме.

- 1. Определение и классификация электрохимических процессов.
- 2. Механизм возникновения электродного потенциала.
- 3. Стандартный водородный электрод и водородная шкала потенциалов.
- 4. Уравнение Нернста и направление окислительно-восстановительного процесса.
- 5. Решение типовых задач.

Тема 9. Металлы. Коррозионные процессы (семинарское занятие).

Вопросы к теме:

- 1. Химическая коррозия металлов.
- 2. Электрохимическая коррозия металлов.
- 3. Атмосферная коррозия. Коррозия в грунте.
- 4. Коррозия при неравномерной аэрации.
- 5. Контактная коррозия.
- 6. Методы защиты от коррозии.

Задание:

- 1) Рассчитайте стандартную энтальпию и стандартную энтропию химической реакции;
- 2) Покажите какой из факторов процесса, энтальпийный или энтропийный, способствует самопроизвольному протеканию процесса в прямом направлении;
- 3) Определите, в каком направлении при 298 К (прямом или обратном) будет протекать реакция, если все вещества находятся в стандартном состоянии;
- 4) Рассчитайте температуру, при которой равновероятны оба направления реакции. При каких температурах, выше или ниже рассчитанной, более вероятно протекание указанной реакции в прямом направлении;
- 5) Определите, изменится ли направление протекания процесса, если парциальное давление одного из исходных гаообразныхвещест

Номерварианта	Уравнениереакции
1	$CO_{2(\Gamma)} + C_{(\kappa p)} = 2CO_{(\Gamma)}$
2	$N_{2(r)} + 3H_{2(r)} = 2NH_{3(r)}$
3	$CO_{(r)} + H_{2(r)} = C_{(r)} + H_2O_{(r)}$
4	$SO_{2(r)} + Cl_{2(r)} = SO_2Cl_{2(r)}$
5	$CH_{4(r)} + H_2O_{(r)} = CO_{(r)} + 3H_{2(r)}$
6	$2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$
7	$PCl_{5(r)} = PCl_{3(r)} + Cl_{2(r)}$
8	$2NO_{(r)} = N_2O_{4(r)}$
9	$FeO_{(T)} + CO_{(\Gamma)} = Fe_{(T)} + CO_{2(\Gamma)}$
10	$2H_2S_{(r)} + SO_{2(r)} = 3S_{(r)} + 2H_2O_{(r)}$
11	$C_{(T)} + 2H_{2(\Gamma)} = CH_{4(\Gamma)}$
12	$CH_{4(r)} + 2H_2O_{(r)} = CO_{2(r)} + 4H_{2(r)}$
13	$CO_{(r)} + H_2O_{(r)} = CO_{2(r)} + H_{2(r)}$
14	$Fe_2O_{3(r)} + 3H_{2(r)} = 2Fe_{(r)} + 3H_2O_{(r)}$
15	$CO_{2(r)} + 4H_{2(r)} = CH_{4(r)} + 2H_2O_{(r)}$
16	$CH_{4(r)}^{(r)} + 2O_{2(r)} = CO_{2(r)} + 2H_2O_{(r)}$
17	$2Al_2O_{3(r)} + 6SO_{2(r)} + 3O_{2(r)} = 2Al_2(SO_4)_{3(r)}$
18	$2CuO_{(r)} + NO_{2(r)} + O_{2(r)} = Cu(NO_3)_{2(r)}$
19	$4NO_{2(r)} + O_{2(r)} + 2H_2O_{(x)} = 4HNO_{3(x)}$
20	$2H_2O_{(x)} + 2SO_{2(r)} + O_{2(r)} = 2H_2SO_{4(x)}$
21	$2H_2S_{(r)} + 3O_{2(r)} = 2H_2O_{(x)} + 2SO_{2(r)}$
22	$4HCl_{(r)} + O_{2(r)} = 2Cl_{2(r)} + 2H_2O_{(xc)}$
23	$2NH_{3(r)} + SO_{3(r)} + H_2O_{(r)} = (NH_4)_2SO_{4(r)}$
24	$2Mg(NO_3)_{2(r)} = 2MgO_{(r)} + 4NO_{2(r)} + O_{2(r)}$
25	$CH_{4(r)} + 4Cl_{2(r)} = CCl_{4(r)} + 4HCl_{(r)}$
26	$Cl_{2(r)} + 2HI_{(r)} = I_{2(r)} + 2HCl_{(r)}$
27	$I_{2(r)} + H_2S_{(r)} = S_{(r)} + 2HI_{(r)}$

28 29	$H_{2(r)} + I_{2(r)} = 2HI_{(r)}$ $CaO_{(r)} + CO_{2(r)} = CaCO_{3(r)}$
30	$H_{2(r)} + Cl_{2(r)} = 2HCl_{(r)}$

Индивидуальные задания

Задание.

- 1) Для обратимой газовой реакции рассчитайте стандартное изменение энергии Гиббса для: а) $T_1 = 298 \text{ K}$; б) T_2 и значения констант равновесия K_p и K_c для обеих температур;
- 2) Определите направление протекания реакции при этих температурах: а) из стандартного состояния; б) при следующих начальных условиях: давление каждого из исходных веществ равно p_1 , давление каждого из продуктов реакции равно p_2 ;
- 3) Рассчитайте равновесные давления и концентрации всех компонентов равновесной системы при температуре T_2 ;
- 4) Предложите способы увеличения концентрации продуктов в равновесной смеси.

При ответах на вопросы можно допустить: а) $\Delta H^0_{x.p.}$ и $\Delta S_{x.p.}$ не завсят от температуры; б) ко всем газообразным компонентам системы применимы законы идеальных газов.

Номер	Обратимая реакция	T ₂ , K	р₁, кПа	р₂, кПа
варианта	1 1	2)	1 17	127
1	$2H_2 + CO = CH_3OH$	600	70	50
2	$2NO_2 = N_2O_4$	400	50	55
3	$2NO_2 = NO + O_2$	1000	60	60
4	$N_2O_4 = 2NO_2$	500	45	85
5	$H_2 + F_2 = 2HF$	600	60	90
6	$H_2 + Cl_2 = 2HCl$	700	90	80
7	$H_2 + I_2 = 2HI$	400	60	70
8	$2SO_2 + O_2 = 2SO_3$	800	80	20
9	$SO_2 + Cl_2 = SO_2Cl$	450	70	50
10	$COCl_2 = CO + Cl_2$	400	30	40
11	$CO_2 + H_2 = CO + H_2O$	1100	80	90
12	$2CO_2 = CO + O_2$	800	30	80
13	$C_2H_6 = C_2H_4 + H_2$	500	120	20
14	$C_2H_5OH = C_2H_4 + H_2O$	400	80	30
15	$2HC1 = C1_2 + H_2$	1000	40	70
16	$2HBr = H_2 + Br_2$	400	30	70
17	$H_2 + I_2 = 2HI$	450	90	30
18	$PCl_3 + Cl_2 = PCl_5$	800	40	90
19	$C_2H_2 + H_2 = C_2H_4$	600	130	80
20	$C_3H_6 + H_2 = C_3H_8$	800	40	140
21	$C_4H_8 + H_2 = C_4H_{10}$	1000	80	20
22	$CHCl_3 + Cl_2 = CCl_4 + HCl$	900	40	60
23	$CH_3OH = 2H_2 + CO$	700	70	30
24	$H_2 + Br_2 = 2HBr$	500	120	40

25	$2NO_2 = N_2O_4$	350	40	140
26	$CO + Cl_2 = COCl_2$	500	80	50
27	$CO + H_2O = CO_2 + H_2$	1000	40	60
28	$C_2H_4 + H_2 = C_2H_6$	450	70	30
29	$C_2H_4 + H_2O = C_2H_5OH$	500	40	70
30	$C_2H_4 + H_2 = C_2H_6$	600	80	50

- 1. Определите для комплексного соединения вашего варианта:
- а) составные части этого соединения (внешнюю и внутреннюю кординационныесферы, комплексообразователь, лиганды);
 - б) заряд комплексного иона и заряд комплексообразователя;
 - в) тип гибридизации орбиталей комплексообразователя;
 - г) пространственную конфигурацию валентных орбиталей;
- д) тип расщепления валентных орбиталей, каким является комплекс: низко- или высокоспиновым;
 - е) магнитные свойства комплексного соединения;
 - ж) окрашен или бесцветен комплекс.

2. Составьте энергетическую диаграмму образования связей в комплексном соединении.

Варианты заданий

	Барианты задании				
Ва- риант	Соединение	Вариант	Соединение	Ва- риант	Соединение
1	$\text{Li}_3[\text{Cr}(\text{NSC})_6]$	11	$Na_2[Zr(OH)_6]$	21	$K_2[WS_4]$
2	[Ru(H ₂ O)(NH ₃) ₅)]Cl ₃	12	$(NH_4)_2[MnBr_4]$	22	$K_2[Re(NSC)_6]$
3	Na ₃ [MnCl ₆]	13	Ca[FeCl ₄] ₂	23	[W(CO) ₆]
4	[Pt(NH ₃) ₂ (NO ₂) ₂]	14	[Pt (NH ₃) ₄]Cl ₂	24	[Ru(NH ₃) ₅ Cl]SO ₄
5	Na ₂ [TiF ₆]	15	$[V(NH_3)_5NO_2]Br_2$	25	$\text{Li}_2[\text{Pb}(\text{NO}_2)_4]$
6	$[Pb(H_2O)_4]SO_4$	16	Li ₂ [FeCl ₄]	26	$[Cr(H_2O)_6](NO_3)_3$
7	K ₂ [Pt (NO ₂) ₄]	17	$[Pb(NH_3)_2Br_2]$	27	Fe[Fe(H ₂ O) (CN) ₅]
8	K ₂ [Ni(CN) ₄](сильн.)	18	$[Ir(CO)_2I_2]$	28	K ₂ [Co(NH ₃) ₅ Br]
9	Na ₂ [Rb(CO)Cl ₅]	19	[Ni(CO) ₄](слаб.)	29	Na [Pt(NH ₃) ₃ Cl ₃]
10	Li ₂ [OsF ₆]	20	Na ₂ [MnCl ₄]	30	Ca[NiBr ₄]

Определите количество имеющегося раствора необходимо для приготовления:

- а) 100 мл 0,5 M раствора H₂SO₄;
- б) 200 мл 10% раствора H_2SO_4 , $\rho = 1,069$ г/мл;
- в) 50 мл раствора H_2SO_4 T = 0.0615 г/мл;
- г) 100 мл раствора H_2SO_4 моляльность которого равна 2 моль/кг, $\rho = 1,1$ г/мл.

Номерварианта		Номер	
	Раствор	варианта	Раствор
1	1,5MH ₂ SO ₄ (ρ =1,124 Γ /мл)	16	0,5 М H ₂ SO(ρ=1,066г/мл)
2	2нH ₂ SO ₄ (р=1,186г/мл)	17	$2,5$ н H_2 SO ₄ (ρ = $1,2$ г/мл)
3	$T (H_2SO_4) = 0,123 \ \Gamma/мл$	18	$T (H_2SO_4) = 0.0615 \ г/мл$
4	$\chi(H_2SO_4)=0,1(\rho=1,05\Gamma/MЛ)$	19	$\chi(H_2SO_4)=0,15(\rho=1,15\Gamma/мл)$
5	$2,5 \text{ M H}_2\text{SO}_4 (\rho=1,14\Gamma/\text{мл})$	20	$1,5 \text{ M H}_2\text{SO}_4 \ (\rho = 1,11 \ \text{г/мл})$
6	2 M H ₂ SO ₄ (ρ=1,174г/мл)	21	1,2 M H ₂ SO ₄ (ρ =1,134г/мл)
7	1,5нH ₂ SO ₄ (ρ =1,128г/мл)	22	1нH ₂ SO ₄ (ρ=1,095г/мл)
8	$T(H_2SO_4) = 0,223$ г/мл	23	$T(H_2SO_4) = 0.215 \ \Gamma/мл$
9	$\chi(H_2SO_4)=0,2(\rho=1,08\Gamma/M\pi)$	24	$\chi (H_2SO_4)=0.05(ho=1.1 \Gamma/мл)$
10	2,5 MH ₂ SO ₄ (ρ =1,143г/мл)	25	2,3 M H ₂ SO ₄ (ρ=1,14г/мл)
11	$1 \text{ M H}_2 \text{SO}_4 (\rho = 1,109 \Gamma / \text{мл})$	26	0,5 М Н ₂ SO ₄ (ρ=1,019г/мл)
12	$T (H_2SO_4) = 0,1343$ г/мл	27	$T (H_2SO_4) = 0,113 \ \Gamma/мл$
13	$\chi(H_2SO_4)=0,3(\rho=1,15\Gamma/M\pi)$	28	$\chi(H_2SO_4)=0,21(\rho=1,15\Gamma/мл)$
14	1нH ₂ SO ₄ (р=1,095г/мл)	29	0,5нН₂ЅО₄ (ρ=1,035г/мл)
15	1 M H ₂ SO ₄ (ρ=1,080г/мл)	30	2 М H ₂ SO ₄ (ρ=1,174г/мл)

Индивидуальные задания

- 1) Из четырех веществ вашего варианта (см. табл. 8, столбцы 1-4) выберите сильные и слабые электролиты и составьте уравнение дисоциации их в водном растворе.
- 2) В столбце 1а даны значения молярных концентраций для растворов электролитов из столбца 1. Зная молярную концентрацию своего раствора, определите молярную концентрацию эквивалента, моляльность, молярную долю, массовую долю и титр раствора, принимая его плотность равной 1 г/мл.
- 3) Рассчитайте рН растворов электролитов из столбцов 1 и 2 для соответствующих концентраций, данных в столбцах 1а и 2а. для раствора сильного электролита определите ионную силу раствора и активность катионов и анионов. Для раствора слабого электролита рассчитайте степень диссоциации по строгой и приближенной формулам Оствальда и сделайте вывод по полученным значениям. Напишите выражение для констант диссоциации слабого электролита по всем возможным ступеням.
- 4) В столбце 3 приведены малорастворимые электролиты. Напишите выражение для ПР малорастворимого электролита вашего варианта. Определите, можно ли приготовить раствор этого электролита молярной концентрацией равной 5 · 10⁻⁵ моль/л. Оцените, в каком объеме воды можно растворить 0,5 г данного вещества.

- 5) Напишите уравнение гидролиза соли, данной в столбце 4, по всем возможным ступеням и выражение для констант гидролиза по этим ступеням. Оцените (при наличии необходимых табличных данных) значения констант гидролиза для отдельных стадий. Сделайте вывод по полученным значениям.
- 6) Рассчитайте pH раствора соли из столбца 4 для концентрации 0,05 моль/л, учитывая только первую ступень гидролиза. Укажите реакцию среды раствора. Определите, как будет изменяться pH раствора при нагревании и почему?

Номер		Наименовал	ниевещества		Концентрация	явещества
варианта	1	2	3	4	1a	2a
1	CsOH	$H_2C_2O_4$	SrSO ₄	Na ₂ SO ₄	0,002	0,01
2	HBr	HBrO	AgI	Na ₃ BO ₃	0,002	0,04
3	$Sr(OH)_2$	H_3BO_3	MnS	K_2S	0,003	0,002
4	RbOH	CH ₃ COOH	PbI_2	$Pb(NO_3)_2$	0,004	0,08
5	$Ca(OH)_2$	НСООН	$PbCL_2$	$AI_2(SO_4)_3$	0,001	0,06
6	H_2SO_4	NH ₄ OH	BaCrO ₄	$NaNO_2$	0,008	0,06
7	LiOH	H_3PO_4	$Ca_3(PO_4)_2$	HCOOLi	0,005	0,08
8	HI	H_2SO_3	CaCO ₃	Na ₂ SiO ₃	0,003	0,02
9	$Ba(OH)_2$	HCN	CaSO ₄	K_2SO_3	0,008	0,01
10	HClO ₄	NH ₄ OH	$MgCO_3$	$(NH_4)_2SO_4$	0,005	0,005
11	HC1	H_2Se	Ag_2SO_4	Na_2CO_3	0,002	0,07
12	KOH	H_2SiO_3	BaSO ₄	$FeCl_2$	0,004	0,002
13	NaOH	HNO_2	Ag_2CrO_4	$Ba(NO_3)_2$	0,006	0,008
14	HNO_3	$HAlO_2$	ZnS	KNO_2	0,002	0,02
15	HClO ₄	HClO	CaF ₂	$Ca(NO_3)_2$	0,03	0,007
16	LiOH	H_2CO_3	BaCO ₃	Na_2S	0,04	0,009
17	$Sr(OH)_2$	H_2SeO_3	Ag_3PO_4	AlCl ₃	0,005	0,02
18	HI	HF	FeS	K_2CO_3	0,03	0,007
19	KOH	H_2S	NiS	NH ₄ Cl	0,07	0,04
20	$Ba(OH)_2$	H_3PO_4	PbSO ₄	CrCl ₃	0,007	0,01
21	CsOH	H_2SO_3	Ag_2SO_4	$ZnCl_2$	0,002	0,06
22	$Ca(OH)_2$	HCN	Ag_2S	NiSO ₄	0,002	0,06
23	H_2SO_4	HOC1	CdS	NaCl	0,003	0,006
24	HBr	H_3BO_3	PbCO ₃	$AI_2(SO_4)_3$	0,004	0,008
25	RbOH	H_2TeO_3	AgCl	$(NH_4)_2SO_4$	0,001	0,007
26	LiOH	H_2Te	SrSO ₄	Na_2SO_3	0,008	0,02
27	HC1	NH ₄ OH	AgI	Na ₂ SiO ₃	0,005	0,007
28	HClO ₄	$HAlO_2$	$Ca_3(PO_4)_2$	CuSO ₄	0,003	0,02
29	HNO_3	HNO_2	AgBr	K ₂ Se	0,008	0,003
30	HBr	НСООН	PbCl ₂	KCN	0,002	0,006

Задача 1.

- 1) Методом электронно ионного баланса расставьте стехиометрические коэффициенты в уравнени химической реакции;
- 2) Обоснуйте направление протекания реакции слева направо и справа налево;
- 3) Рассчитайте константу равновесия и стандартный окилительно восстановительный потенциал.

Номерваианта	Уравнениереакции	
1	$SnCl_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow Sn(SO_4)_2 + CrCl_3 + K_2SO_4 + H_2O$	
2	$HI + KClO_3 \rightarrow I_2 + KCl + H_2O$	
3	$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2S + H_2O$	
4	$K_2SnO_2 + Bi(OH)_3 \rightarrow K_2SnO_3 + Bi + H_2O$	
5	$KNO_2 + KMnO_4 + H_2SO_4 \rightarrow KNO_3 + MnSO_4 + K_2SO_4 + H_2O$	
6	$S + KMnO_4 + H_2SO_4 \rightarrow SO_2 + MnSO_4 + K_2SO_4 + H_2O$	
7	$SnCl_2 + K_2Cr_2O_7 + HCl \rightarrow SnCl_4 + CrCl_3 + KCl + H_2O$	
8	$Cr_2O_3 + KClO_3 + KOH \rightarrow K_2Cr_2O_7 + KCl + H_2O$	
9	$K_2SnO_2 + Br_2 + KOH \rightarrow K_2SnO_3 + KBr + H_2O$	
10	$KC1 + KMnO_4 + H_2SO_4 \rightarrow Cl_2 + MnSO_4 + K_2SO_4 + H_2O$	
11	$SO_2 + FeCl_3 + H_2O \rightarrow H_2SO_4 + FeCl_2 + HCl$	
12	$I_2 + HNO_3 \rightarrow HIO_3 + NO + H_2O$	
13	$NaI + K_2Cr_2O_7 + H_2SO_4 \rightarrow I_2 + Cr_2(SO_4)_3 + Na_2SO_4 + K_2SO_4 + H_2O_4$	
14	$MnO_2 + KClO_3 + KOH \rightarrow K_2MnO_4 + KCl + H_2O$	
15	$As_2O_3 + HNO_3 + H_2O \rightarrow H_3AsO_4 + NO$	
16	$Na_2S + K_2Cr_2O_7 + H_2SO_4 \rightarrow S + Cr_2(SO_4)_3 + Na_2SO_4 + K_2SO_4 +$	
	H_2O	
17	$FeSO_4 + HNO_3 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + NO + H_2O$	
18	$HI + KIO_3 + H_2SO_4 \rightarrow I_2 + K_2SO_4 + H_2O$	
19	$K_2Cr_2O_7 + H_2SO_4 + K_2SO_4 \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + H_2O$	
20	$KI + KClO_3 + H_2SO_4 \rightarrow I_2 + KCl + K_2SO_4 + H_2O$	
21	$HgS+HNO_3+HC1 \rightarrow S+NO+HgCl_2+H_2O$	
22	$CrCl_3 + NaClO + NaOH \rightarrow Na_2CrO_4 + NaCl + H_2O$	
23	$Na_3PO_3 + K_2Cr_2O_7 + H_2SO_4 \rightarrow Na_3PO_4 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O_4$	
24	$FeCl_2 + KMnO_4 + HCl \rightarrow FeCl_3 + MnCl_2 + KCl + H_2O$	
25	$C + K_2Cr_2O_7 + H_2SO_4 \rightarrow CO_2 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O_4$	
26	$HCl + KMnO_4 \rightarrow Cl_2 + MnCl_2 + KCl + H_2O$	
27	$PH_3 + KMnO_4 + H_2SO_4 \rightarrow H_3PO_4 + MnSO_4 + K_2SO_4 + H_2O$	
28	$(NH4)2S + K2Cr2O7 + H2O \rightarrow S + Cr(OH)3 + KOH + NH4OH$	
29	$NaI + NaNO_3 + H_2SO_4 \rightarrow I_2 + NO + Na_2SO_4 + H_2O$	
30	$KBr + MnO2 + H2SO4 \rightarrow Br2 + MnSO4 + K2SO4 + H2O$	

Задача №2

Для данного гальванического элемента:

- 1) определите анод и катод;
- 2) напишите уравнения процессов, протекающих на аноде и катоде в работающем гальваническом элементе. Напишите уравнение токообразующей реакции;
- укажите изменения значений равновесых электродных потенциалов анодного и катодного процессов при прохождении тока. Объясните причину такого изменения;
- 4) рассчитайте энтальпию, энергию Гиббса токообразующиго процесса и электродвижущую силу гальванического элемента;
- 5) предложите факторы, увеличивающие напряжение.

Номерварианта		Номер	
	Гальваническаяпара	варианта	Гальваническаяпара
1	H_2 ,Pt $ H^+ Zn^{2+} Zn$	16	$Zn Zn^{2+} Cu^{2+} Cu$
2	$Cl_2,Pt Cl^- Zn^{2+} Zn$	17	$Ag Ag^{+} Mg^{2+} Mg$ $Cu Cu^{2+} Mg^{2+} Mg$
3	$Ag Ag^{+} Zn^{2+} Zn$	18	$Cu Cu^{2+} Mg^{2+} Mg$
4	$Ag Ag^{+} Zn^{2+} Zn$ $Ni Ni^{2+} Zn^{2+} Zn$	19	$Ag Ag^+ H^+ H_2,Pt$
5	Ni Ni ²⁺ Fe ²⁺ Fe	20	Li Li ⁺ Cl ⁻ Cl ₂ ,Pt
6	$Ni Ni^{2+} Cd^{2+} Cd$	21	$Mg Mg^{2+} OH^{-} O_2,Pt$
7	$H_2,Pt H^+ OH^- O_2,Pt$	22	$Al Al^{3+} OH^- O_2,Pt$
8	$Cd Cd^{2+} OH^{-} O_2,Pt$	23	$Mg Mg^{2+} OH^{-} O_2,Pt$
9	Ni Ni ²⁺ OH ⁻ O ₂ ,Pt	24	Li Li ⁺ H ⁺ H ₂ ,Pt
10	O_2 ,Pt OH Mg ²⁺ Mg	25	$\text{Li} \text{Li}^+ \text{OH}^- \text{O}_2,\text{Pt}$
11	$Ag Ag^{+} Cd^{2+} Cd$	26	$Mn Mn^{2+} Zn^{2+} Zn$
12	$Ni Ni^{2+} Mg^{2+} Mg$	27	$Mg Mg^{2+} OH O_2,Pt$
13	H_2 ,Pt $ H^+ Cd^{2+} Cd$	28	$H_2,Pt H^+ Zn^{2+} Zn$
14	$Cl_2,Pt Cl^- Cd^{2+} Cd$	29	$H_2,Pt H^+ OH^- O_2,Pt$
15	$Br_2,Pt Br Zn^{2+} Zn$	30	$Ag Ag^{+} Cd^{2+} Cd$

Индивидуальные задания

- 1) Смешали равные объемы 1%-ных растворов веществ в колонках 1 и 2 (плотности принять равными 1 г/мл).
- 2) Напишите формулу мицеллы образовавшегося золя.
- 3) Какой из этих электролитов будет иметь более сильное коагулирующее действие KCl, K_2SO_4 , K_3PO_4 , KNO_3 , $MgSO_4$, $CuSO_4$, $Al(NO_3)_3$, CH_3COOK , $NiSO_4$, $Cr_2(SO_4)_3$, $ZnSO_4$, $Pb(NO_3)_2$, $MnSO_4$.

Номерварианта		
---------------	--	--

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	CaCl ₂ AgNO ₃ (NH ₄) ₂ S K ₂ SiO ₃ FeCL ₃ BaCl ₂ AlCl ₃ KI Na ₃ PO ₄ KOH Na ₂ S KOH BaCl ₂	H ₂ SO ₄ NaCl MnCl ₂ HCl AgNO ₃ K ₂ CrO ₄ KOH Pb(NO ₃) ₂ MgCl ₂ ZnCl ₂ AgNO ₃	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	(NH ₄) ₂ S K ₂ SiO ₃ FeCL ₃ BaCl ₂ AlCl ₃ KI Na ₃ PO ₄ KOH Na ₂ S KOH	MnCl ₂ HCl AgNO ₃ K ₂ CrO ₄ KOH Pb(NO ₃) ₂ MgCl ₂ ZnCl ₂ AgNO ₃	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	K ₂ SiO ₃ FeCL ₃ BaCl ₂ AlCl ₃ KI Na ₃ PO ₄ KOH Na ₂ S KOH	HCl AgNO ₃ K ₂ CrO ₄ KOH Pb(NO ₃) ₂ MgCl ₂ ZnCl ₂ AgNO ₃	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	FeCL ₃ BaCl ₂ AlCl ₃ KI Na ₃ PO ₄ KOH Na ₂ S KOH	$\begin{array}{c} AgNO_3 \\ K_2CrO_4 \\ KOH \\ Pb(NO_3)_2 \\ MgCl_2 \\ ZnCl_2 \\ AgNO_3 \end{array}$	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	BaCl ₂ AlCl ₃ KI Na ₃ PO ₄ KOH Na ₂ S KOH	K_2CrO_4 KOH $Pb(NO_3)_2$ $MgCl_2$ $ZnCl_2$ $AgNO_3$	
8 9 10 11 12 13 14 15 16 17 18 19 20	AlCl ₃ KI Na ₃ PO ₄ KOH Na ₂ S KOH	$\begin{array}{c} \text{KOH} \\ \text{Pb(NO}_3)_2 \\ \text{MgCl}_2 \\ \text{ZnCl}_2 \\ \text{AgNO}_3 \end{array}$	
8 9 10 11 12 13 14 15 16 17 18 19 20	KI Na ₃ PO ₄ KOH Na ₂ S KOH	$egin{aligned} ext{Pb(NO}_3)_2 \ ext{MgCl}_2 \ ext{ZnCl}_2 \ ext{AgNO}_3 \end{aligned}$	
9 10 11 12 13 14 15 16 17 18 19 20	Na ₃ PO ₄ KOH Na ₂ S KOH	$egin{array}{l} MgCl_2 \ ZnCl_2 \ AgNO_3 \end{array}$	
10 11 12 13 14 15 16 17 18 19 20	KOH Na ₂ S KOH	$rac{ZnCl_2}{AgNO_3}$	
11 12 13 14 15 16 17 18 19 20	Na ₂ S KOH	${ m AgNO_3}$	
12 13 14 15 16 17 18 19 20	КОН		
13 14 15 16 17 18 19 20			
14 15 16 17 18 19 20	BaCl ₂	$FeCL_3$	
15 16 17 18 19 20		$\mathrm{H_2SO_4}$	
16 17 18 19 20	NaF	$Pb(NO_3)_2$	
17 18 19 20	NaBr	$AgNO_3$	
18 19 20	AlCl ₃	Na_3PO_4	
19 20	Na_2SiO_3	MgI_2	
20	SnCl ₂	Na_2S	
	CoCl ₂	Na_3PO_4	
21	CuSO ₄	NaOH	
	K_2CrO_4	BaCl_2	
22	H_2SO_4	SrBr_2	
23	CaCl ₂	Na_2CO_3	
24	CuSO ₄	H_2S	
25	$ZnCl_2$	Na_2S	
26	$MnSO_4$	Na_2SiO_3	
27	$ZnCl_2$	Na_2S	
28	$PbCl_2$		
29	$AgNO_3$	Na_2S	
30	Na ₃ PO ₄	ZnCl ₂	

7. КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ДИСЦИПЛИНЕ (ВОПРОСЫ К ЗАЧЕТУ)

- 1. Основные классы неорганических соединений. Оксиды и основания. Принципы классификации, химические свойства и способы получения. Взаимосвязь структуры оксидов от валентности элементов и их расположение в периодической системе.
- 2. Основные законы и понятия химии (закон сохранения массы и энергии, закон постоянства состава и кратных отношений, закон эквивалентов). Моль количества вещества. Закон Авагадро и его следствия.
- 3. Кислоты и соли. Принципы классификации. Химические свойства и способы получения солей.
- 4. Атомно-молекулярное учение. Теория Резерфорда, её достоинства и недостатки. Квантовая теория атома Н. Бора, основные положения, достоинства и недостатки.
- 5. Принципы заполнения атомных орбиталей.
- 6. Периодический закон и периодическая система элементов Д.И. Менделеева. История и этапы создания.
- 7. Параметры атома и периодичность их изменения в пределах системы элементов.

- 8. Закон сохранения массы и энергии, его значение в химических расчетах. Закон постоянства состава и кратных отношений.
- 9. Закон Авогадро и его следствия. Закон эквивалентов.
- 10. Химическая связь и строение молекул. Метод валентных связей, его достоинства и недостатки.
- 11. Метод молекулярных орбиталей. Его достоинства и недостатки.
- 12. Ковалентная связь. Механизмы образования химической связи.
- 13. Гибридизация атомных орбиталей. Типы гибридизации. Пространственное расположение гибридных атомных орбиталей.
- 14. Ионная связь.
- 15. Металлическая связь.
- 16. Межмолекулярное взаимодействие. Природа Ван-дер-Ваальсовых сил.
- 17. Агрегатное состояние вещества.
- 18. Химическое строение твердого тела.
- 19. Аморфное состояние вещества.
- 20. Кристаллы. Кристаллические решетки, типы кристаллических решеток, строение.
- 21. Реальные кристаллы, дефекты кристаллической решетки.
- 22. Первый закон термодинамики Понятие энтальпия. Принципы расчета энтальпии применительно к химическим системам.
- 23. Второй закон термодинамики. Понятие энтропия. Принципы расчета этого термодинамического параметра применительно к химическим системам.
- 24. Свободная энергия Гиббса, как критерий оценки возможности самопроизвольного протекания химических процессов.
- Закон действующих масс. Зависимость скорости химической реакции от концентрации и природы реагирующих веществ.
- 26. Энергия активации. Понятие активированный комплекс. Закон Вант-Гоффа. Катализ.
- 27. Химическое равновесие. Принцип Ле-Шателье. Константа равновесия как критерий оценки одностороннего протекания химического процесса.
- 28. Общая теория растворов и растворителей. Способы выражения концентрации растворов. Понятие растворимость. Растворимость газов в жидкостях, закон Генри. Взаимная растворимость жидкостей, понятие константы распределения.
- 29. Диффузия и осмос. Закон Вант-Гоффа.
- 30. Температуры кипения и замерзания растворов и растворителей. Первый и второй закон Рауля.
- 31. Основные принципы классификации растворителей (полярность, ионизирующая способность, кислотность и т.д.).
- 32. Теория электролитической диссоциации.
- 33. Кислоты и основания с точки зрения теории электролитической диссоциации Аррениуса, теории Бренстеда и Лоури, электронной теории Льюиса.
- 34. Сильные и слабые электролиты. Динамическое равновесие в растворах.
- 35. Кажущаяся и эффективная концентрация. Понятие активности.
- 36. Ионные реакции в растворах.
- 37. Произведение растворимости.
- 38. Ионное произведение воды, водородный показатель.
- 39. Гидролиз солей.
- 40. Буферное действие. Буферные растворы.
- 41. Комплексные соединения. Общая характеристика. Понятие координационная связь.
- 42. Теория комплексных соединений А. Вернера.
- 43. Пространственное строение и изомерия комплексных соединений.
- 44. Метод Валентных связей в описании комплексных соединений.
- 45. Общие понятия о дисперсных системах.
- 46. Классификация дисперсных систем.
- 47. Способы образования и устойчивости дисперсных систем.

- 48. Золи, гели, студни.
- 49. Получение коллоидных растворов Структура коллоидной частицы. Мицеллярное строение золей.
- 50. Исходные понятия об устойчивости дисперсных систем. Энергия Ван-дерваальсовых взаимодействий.
- 51. Электролитная коагуляция. Пептизация. Кинетика процесса коагуляции.
- 52. Поверхностно-активные вещества и их влияние на дисперсные системы.
- 53. Аэрозоли, порошки, суспензии, пены. Применение ПАВ.
- 54. Эмульсии: проблемы устойчивости. Тип эмульсии.
- 55. Эмульгаторы: их действие и типы.
- 56. Солюбилизация (коллоидное растворение).
- 57. Окислительно-восстановительные процессы. Степень окисления и строение атома элемента.
- 58. Классификация окислительно-восстановительных реакций.
- 59. Способы расстановки коэффициентов в окислительно-восстановительных реакциях. Методы электронного баланса и ионно-электронный.
- 60. Электродный потенциал и ряд напряжения металлов.
- 61. Стандартный и реальный электродный потенциал. Уравнение Нернста.
- 62. Факторы влияющие на протекание окислительно-восстановительных реакций.
- 63. Химические источники тока. Гальванические элементы.
- 64. Процессы, происходящие при зарядке и разрядке свинцового аккумулятора.
- 65. Электролиз. Законы Электролиза.
- 66. Общие свойства металлов. Металлическая связь.
- 67. Коррозия. Виды коррозии. Коррозия металлов и способы борьбы с ней.
- 68. Водород. Место в периодической системе химических элементов. Химические свойства. Получение.
- 69. Соединения водорода: вода и пероксид водорода.
- 70. Галогены. Общая характеристика. Химические свойства. Получение.
- 71. Соединения галогенов: галогеноводороды; кислородосодержащие соединения галогенов.
- 72. Подгруппа кислорода. Общая характеристика. Физические и химические свойства. Получение.
- 73. Озон. Физические и химические свойства. Получение.
- 74. Сера. Физические свойства. Аллотропия. Получение.
- 75. Сера. Нахождение в природе. Химические свойства. Применение.
- 76. Сероводород. Получение. Физические и химические свойства. Сульфиды.
- 77. Оксиды серы. Физические и химические свойства. Получение.
- 78. Серная кислота. Получение и свойства.
- 79. Подгруппа азота. Общая характеристика. Азот. Физические и химические свойства.
- 80. Аммиак. Соли аммония.
- 81. Несолеобразующие оксиды азота.
- 82. Азотистый и азотный ангидриды. Азотистая кислота.
- 83. Азотная кислота. Получение. Свойства. Разложение нитратов.
- 84. Фосфор. Аллотропия. Получение. Химические свойства.
- 85. Соединения фосфора: фосфин, оксид фосфора (III), оксид фосфора (V).
- 86. Фосфорные кислоты.
- 87. Подгруппа углерода. Общая характеристика. Аллотропия.
- 88. Химические свойства углерода. Угольная кислота и ее соли.
- 89. Оксиды углерода.
- 90. Кремний. Распространение в природе. Аллотропия. Получение. Свойства.
- 91. Соединения кремния: силан, оксид кремния, кремниевые кислоты.
- 92. Германий, олово, свинец.
- 93. Алюминий. Получение. Свойства.
- 94. Соединения алюминия: оксид, гидроксид, гидрид.
- 95. Щелочные металлы. Общая характеристика. Получение. Свойства.
- 96. Соединения щелочных металлов.
- 97. Щелочно земельные металлы. Общая характеристика. Получение. Свойства.

- 98. Соединения щелочно земельных металлов.
- 99. Подгруппа меди. Общая характеристика. Получение. Свойства.
- 100. Соединения одно- и двухвалентной меди.
- 101. Серебро и его соединения. Золото и его соединения.
- 102. Подгруппа цинка. Общая характеристика. Цинк. Получение, свойства, соединения цинка. Кадмий.
- 103. Ртуть. Соединения одно- и двухвалентной ртути.
- 104. Подгруппа хрома. Общая характеристика. Получение и свойства хрома.
- 105. Соединения двух- и трехвалентного хрома.
- 106. Соединения четырех- и шестивалентного хрома.
- 107. Подгруппа марганца. Общие свойства элементов. Получение металлов. Химические свойства.
- 108. Соединения двух- и трехвалентного марганца.
- 109. Соединения марганца, технеция и рения с валентностью IV.
- 110. Соединения семивалентного марганца. Соли марганца.
- 111. Восьмая группа побочная подгруппа. Общая характеристика. Подгруппа железа. Получение и химические свойства, аллотропия железа.
- 112. Соединения двухвалентного железа.
- 113. Соединения трехвалентного железа.
- 114. Строение органических веществ. Теория химического строения А.М. Бутлерова.
- 115. Квантово-механические представления и электронное строение атома углерода. Валентность.
- 116. Взаимное влияние атомов в молекулах органических соединений. Индуктивный и мезомерный эффекты.
- 117. Классификация органических соединений. Основные классификационные признаки: скелет молекулы, наличие кратных связей и функциональных групп. Гомологи и гомологический ряд.
- 118. Виды изомерии. Структурная и пространственная изомерия. Понятие о хиральности.
- 119. Общие принципы современной международной номенклатуры органических соединений (ИЮПАК).
- 120. Классификация органических реакций. Схемы органических реакций. Гомо- и гетеролитический тип разрыва связи. Радикалы, электрофилы и нуклеофилы. Окисление и восстановление в органической химии.
- 121. Алканы (предельные углеводороды). Электронное и пространственное строение. Номенклатура и изомерия. Физические свойства. Способы получения.
- 122. Алканы (предельные углеводороды). Химические свойства. Отдельные представители.
- 123. Алкены. Электронное и пространственное строение, номенклатура, изомерия. Физические свойства. Получение алкенов.
- 124. Алкены. Химические свойства. Реакции присоединения. Правило Марковникова. Качественные реакции. Отдельные представители.
- 125. Алкины. Электронное и пространственное строение алкинов. Изомерия. Получение.
- 126. Алкины. Химические свойства алкинов. Ацетилениды. Отдельные представители.
- 127. Алкадиены. Номенклатура и изомерия. Классификация. Сопряженные диены. Получение и химические свойства. Реакции 1,2- и 1,4-присоединение. Природный и синтетический каучук.
- 128. Галогенпроизводные предельных углеводородов. Строение, номенклатура, изомерия. Получение и химические свойства. Отдельные представители.
- 129. Арены. Электронное и пространственное строение бензола. Ароматичность. Производные бензола. Получение и применение.
- 130. Арены. Химические свойства. Отдельные представители. Влияние заместителей на направление электрофильного замещения в бензольном кольце.
- 131. Спирты. Классификация. Предельные одноатомные спирты. Номенклатура. Изомерия. Физические свойства. Получение.

- 132. Предельные одноатомные спирты. Химические свойства. Простые эфиры. Отдельные представители.
- 133. Тиолы (тиоспирты). Номенклатура. Получение. Физические свойства. Химические свойства.
- 134. Фенолы. Классификация. Строение. Физические свойства. Получение.
- 135. Фенолы. Взаимное влияние атомов в молекуле фенола. Химические свойства. Отдельные представители. Фенолоформальдегидные смолы.
- 136. Карбонильные соединения альдегиды и кетоны. Изомерия, номенклатура. Физические свойства. Получение.
- 137. Альдегиды и кетоны. Карбонильная группа, ее особенности. Химические свойства альдегидов и кетонов. Качественные реакции на карбонильную группу. Отдельные представители.
- 138. Карбоновые кислоты. Классификация. Предельные одноосновные карбоновые кислоты. Номенклатура. Изомерия. Физические свойства. Способы получения.
- 139. Предельные одноосновные карбоновые кислоты. Электронное строение. Химические свойства (кислотные свойства, реакции нуклеофильного замещения).
- 140. Функциональные производные карбоновых кислот. Галогенангидриды. Ангидриды.
- 141. Функциональные производные карбоновых кислот. Сложные эфиры. Амиды.
- 142. Амины. Классификация. Номенклатура. Способы получения.
- 143. Амины. Химические свойства (основные свойства, кислотные свойства).
- 144. Амины. Реакции с азотистой кислотой (первичные алифатические амины, первичные ароматические амины, вторичные алифатические и ароматические амины, третичные ароматические третичные алифатические амины).
- 145. Амины. Реакции окисления. Электрофильное замещение в ароматических аминах. Отдельные представители.
- 146. Высокомолекулярные соединения. Классификация и номенклатура. Отличительные особенности ВМС. Физические состояния полимеров.
- 147. Методы синтеза высокомолекулярных соединений. Полимеризация.
- 148. Методы синтеза высокомолекулярных соединений. Поликонденсация.
- 149. Химические превращения полимеров.
- 150. Отдельные представители ВМС и их применение.
- 151. Природные источники углеводородов. Нефть. Промышленная переработка. Ректификация нефти.
- 152. Природные источники углеводородов. Крекинг и риформинг нефтепродуктов.
- 153. Природные источники углеводородов. Природный и попутный нефтяные газы.
- 154. Природные источники углеводородов. Каменный уголь. Коксование.

8 ТЕСТЫ ДЛЯ САМОПОДГОТОВКИ СТУДЕНТОВ

В комплекте около 100 тестов